

Fig. 2. Projection (100).

La caractéristique essentielle de la structure est l'empilement des molécules autour des axes hélicoïdaux d'ordre 4; les contacts de van der Waals s'effectuent
entre atomes d'azote et d'hydrogène ( $2,67 \AA$ ) (Fig. 2). Toutes les autres distances intermoléculaires sont supérieures à la somme des rayons de van der Waals. On peut donc prévoir, à plus basse température, une seconde phase plus compacte et de symétrie moins élevée. On note simplement la longueur de la liaison $\mathrm{C} \equiv \mathrm{N}[1,137$ (14) $\AA$ ] inférieure aux valeurs données pour l'état liquide par d'autres auteurs: 1,156 (1) $\AA$ (Casado et al., 1971) et 1,159 (2) $\AA$ (Bak, Christensen, Dixon, Hansen-Nygaard \& Rastrup-Andersen, 1962) et nettement supérieure à la moyenne des données bibliographiques pour des composés de coordination cristallisés: 1,11 (7) $\AA$ (Massaux \& Le Bihan, 1976).

## Références

Bak, B., Christensen, D., Dixon, W. B., HansenNygatard, L. \& Rastrup-Andersen, J. (1962). J. Chem. Phys. 37, 2027-2031.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1964). ORFFE. Report ORNL-TM-306. Oak Ridge National Laboratory, Tennessee.
Casado, J., Nygatrd, L. \& Sørensen, G. O. (1971). J. Mol. Struct. 8, 211-224.
Massaux, M. \& Le Bihan, M. T. (1976). Acta Cryst. B32, 2032-2039.
Renaud, M. \& Fourme, R. (1966). Bull. Soc. Fr. Minéral. Cristallogr. 89, 243-245.

Acta Cryst. (1978). B34, 1378-1380

# Pyridinium 2,2,5,5-Tetrathio-cyclo-di(phosphadithianate), $\left[(\text { Pyridine })_{2} \mathbf{H}_{2}^{2+}\left[\mathrm{P}_{2} \mathbf{S}_{8}\right]^{-}\right.$ 

By Peter C. Minshall and George M. Sheldrick<br>University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England

(Received 12 September 1977; accepted 8 December 1977)


#### Abstract

C}_{20} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{~S}_{8}\), monoclinic, $P 2_{1} / n, a=$ 10.677 (8), $b=12.048$ (8), $c=12.399$ (8) $\AA, \beta=$ $114.76(6)^{\circ}, U=1448 \AA^{3}, Z=4, D_{x}=1.461 \mathrm{~g} \mathrm{~cm}^{-3}$, $\mu(\mathrm{Cu} K \alpha)=45.35 \mathrm{~cm}^{-1}$. The structure was solved by direct methods and refined to an $R$ of 0.047 for 1641 unique diffractometer data. The cation consists of two pyridine moieties linked by an approximately linear hydrogen bond, with twofold disorder of the H atom position. The anion contains a (PSS) $)_{2}$ six-membered ring in a chair conformation, and lies on a crystallographic centre of symmetry.


Introduction. The sample was isolated from the reaction of $\mathrm{P}_{4} \mathrm{~S}_{10}$ with pyridine (possibly in the presence
of a trace of moisture), and an X-ray crystal structure determination was undertaken when spectroscopic methods proved uninformative. Both the cation and anion are found to have novel structures.
$\mathrm{P}_{4} \mathrm{~S}_{10}(1 \mathrm{~g})$ was refluxed for 3 h in pyridine $(20 \mathrm{ml}$, dried over solid KOH ) and the deep-orange solution allowed to cool slowly. After several days irregular yellow crystals had formed. Intensities were determined with a Syntex $P 2_{1}$ four-circle difrractometer, $\mathrm{Cu} K a$ radiation, a graphite monochromator, and a crystal of approximate dimensions $0.5 \times 0.06 \times 0.06 \mathrm{~mm}$ sealed in a Lindemann-glass capillary tube. 2537 reflexions were measured; after application of Lp and empirical absorption corrections, equivalent reflexions were
averaged to give 1641 unique reflexions with $F>5 \sigma(F)$ based on counting statistics. Unit-cell dimensions were obtained from diffractometer measurements of 15 reflexions. The structure was solved by multisolution $\Sigma_{2}$ sign expansion and refined by full-matrix least squares, with an overall isotropic temperature factor for the H atoms and the remaining atoms anisotropic. Initially the hydrogen-bonded H atom was omitted, and a riding model was employed for the other H atoms: the $\mathrm{C}-\mathrm{H}$ vectors were held constant in magnitude ( $1.00 \AA$ ) and direction, but the CH atom pairs were free to move. A difference electron density synthesis revealed a twofold disorder of the hydrogen-bonding H atom along the $\mathrm{N}-\mathrm{N}$ vector. It was inserted as two atoms, each with a site-occupation factor fixed at 0.5 and $U$ fixed at 0.05 $\AA^{2}$, and subject to the same riding model as the H atoms attached to C . The scattering factors of Cromer \& Mann (1968) were employed for C, N, S and P, and the bonded-atom scattering factor of Stewart, Davidson \& Simpson (1965) was used for H. With the weighting scheme $w=1 /\left[\sigma^{2}(F)+0.000083 F^{2}\right]$ the refinement converged to $R^{\prime}=\Sigma w^{1 / 2} \Delta / \Sigma w^{1 / 2}\left|F_{o}\right|=0.048$ and a

Table 1. Fractional coordinates ( $\times 10^{4}$ )

|  | $x$ | $y$ | $z$ |
| :--- | ---: | ---: | :---: |
|  |  |  |  |
| $\mathrm{P}(1)$ | $-113(1)$ | $5701(1)$ | $6411(1)$ |
| $\mathrm{S}(1)$ | $266(2)$ | $3979(1)$ | $6299(1)$ |
| $\mathrm{S}(2)$ | $-1481(1)$ | $6089(1)$ | $4623(1)$ |
| $\mathrm{S}(3)$ | $-1375(2)$ | $5676(1)$ | $7198(2)$ |
| $\mathrm{S}(4)$ | $1552(1)$ | $6605(1)$ | $6997(1)$ |
| $\mathrm{N}(1)$ | $-2193(5)$ | $9310(4)$ | $5539(4)$ |
| $\mathrm{N}(2)$ | $-4134(4)$ | $7815(4)$ | $5256(4)$ |
| $\mathrm{C}(1)$ | $-2512(7)$ | $10307(5)$ | $5027(6)$ |
| $\mathrm{C}(2)$ | $-1497(7)$ | $11113(5)$ | $5289(7)$ |
| $\mathrm{C}(3)$ | $-172(7)$ | $10872(5)$ | $6049(6)$ |
| $\mathrm{C}(4)$ | $143(6)$ | $9852(5)$ | $6571(5)$ |
| $\mathrm{C}(5)$ | $-921(6)$ | $9078(5)$ | $6276(6)$ |
| $\mathrm{C}(6)$ | $-4716(6)$ | $7161(5)$ | $4317(5)$ |
| $\mathrm{C}(7)$ | $-5725(6)$ | $6406(5)$ | $4263(6)$ |
| $\mathrm{C}(8)$ | $-6096(6)$ | $6367(5)$ | $5179(7)$ |
| $\mathrm{C}(9)$ | $-5483(7)$ | $7045(6)$ | $6130(6)$ |
| $\mathrm{C}(10)$ | $-4481(6)$ | $7768(5)$ | $6148(6)$ |

Table 2. Hydrogen-atom coordinates ( $\times 10^{4}$ )

|  | $x$ | $y$ | $z$ |
| :--- | ---: | ---: | :---: |
| $\mathrm{H}(1)$ | -3482 | 10455 | 4442 |
| $\mathrm{H}(2)$ | -1753 | 11872 | 4938 |
| $\mathrm{H}(3)$ | 572 | 11438 | 6216 |
| $\mathrm{H}(4)$ | 1104 | 9663 | 7149 |
| $\mathrm{H}(5)$ | -701 | 8320 | 6635 |
| $\mathrm{H}(6)$ | -4434 | 7216 | 3645 |
| $\mathrm{H}(7)$ | -6161 | 5899 | 3565 |
| $\mathrm{H}(8)$ | -6827 | 5835 | 5154 |
| $\mathrm{H}(9)$ | -5755 | 7071 | 6810 |
| $\mathrm{H}(10)$ | -4014 | 8268 | 6848 |
| $\mathrm{H}(11)$ | -2923 | 8731 | 5372 |
| $\mathrm{H}(12)$ | -3409 | 8355 | 5285 |

corresponding unweighted $R$ index of 0.047 . The results of the final least-squares cycle are given in Tables 1 and 2, and the resulting interatomic distances and angles in Tables 3 and $4 . \dagger$

Discussion. The anisotropic temperature factors were found to be in good agreement with the rigid-bodymotion model of Schomaker \& Trueblood (1968): $R_{g}=$ $\left(\Sigma \Delta^{2} / \Sigma U_{i j}^{2}\right)^{1 / 2}$ for the agreement between the observed and calculated $U_{i j}$ was 0.052 . Since the anion lies on a crystallographic centre of symmetry, the $\mathbf{S}$ tensor (relative to an origin at the centre) is zero, and the method is exactly equivalent to that of Cruickshank (1956). Librational tensors, with respect to axes parallel to $x^{*}, y$ and $z$, were: $L_{11} 13$ (2), $L_{12} 1$ (1), $L_{13} 7$ (2), $L_{22}$ $35(2), L_{23} 35(2), L_{33} 60(4)\left(\times 10^{-4} \mathrm{rad}^{2}\right) ; T_{11}$ 255 (11), $T_{12}-25$ (9), $T_{13} 41$ (7), $T_{22} 342$ (10), $T_{23}$ 58 (7), $T_{33} 409$ (8) ( $\times 10^{-4} \AA^{2}$ ). These values were used in calculating the librationally corrected bond lengths given in Fig. 1, but uncorrected values are used in the following discussion.

The six-membered $(\mathrm{PSS})_{2}$ ring adopts a chair conformation similar to that reported for $S_{6}$ by Donohue, Caron \& Goldish (1961): S-S 2.059 (4) $\AA$ (2.06 $\AA$ in $\mathrm{S}_{6}$ ), $\mathrm{P}-\mathrm{S}-\mathrm{S} 104.8$ (2) and $104.6(2)^{\circ}$ (S-S-S $102.2^{\circ}$ ), and $\mathrm{P}-\mathrm{S}-\mathrm{S}-\mathrm{P}$ torsion angle $72.8^{\circ}$ (S-S-S-S $74 \cdot 5^{\circ}$ ). The effectively isoelectronic

[^0]Table 3. Bond lengths (not corrected for libration) $(\AA)$

| $\mathrm{P}(1)-\mathrm{S}(1)$ | $2.129(4)$ | $\mathrm{P}(1)-\mathrm{S}(4)$ | $1.946(4)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{P}(1)-\mathrm{S}(2)$ | $2.132(4)$ | $\mathrm{S}(1)-\mathrm{S}(2)$ | $2.059(4)$ |
| $\mathrm{P}(1)-\mathrm{S}(3)$ | $1.966(4)$ |  |  |
| $\mathrm{N}(1)-\mathrm{C}(1)$ | $1.334(10)$ | $\mathrm{N}(2)-\mathrm{C}(6)$ | $1.324(9)$ |
| $\mathrm{N}(1)-\mathrm{C}(5)$ | $1.309(9)$ | $\mathrm{N}(2)-\mathrm{C}(10)$ | $1.306(10)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)$ | $1.388(11)$ | $\mathrm{C}(6)-\mathrm{C}(7)$ | $1.389(10)$ |
| $\mathrm{C}(5)-\mathrm{C}(4)$ | $1.395(10)$ | $\mathrm{C}(10)-\mathrm{C}(9)$ | $1.372(11)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)$ | $1.361(11)$ | $\mathrm{C}(7)-\mathrm{C}(8)$ | $1.351(11)$ |
| $\mathrm{C}(4)-\mathrm{C}(3)$ | $1.362(11)$ | $\mathrm{C}(9)-\mathrm{C}(8)$ | $1.355(11)$ |

Table 4. Bond angles $\left({ }^{\circ}\right)$

| $\mathrm{S}(2)-\mathrm{P}(1)-\mathrm{S}(1)$ | $102 \cdot 2(2)$ | $\mathrm{P}(1)-\mathrm{S}(1)-\mathrm{S}\left(2^{\prime}\right)$ | $104 \cdot 8(2)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{S}(3)-\mathrm{P}(1)-\mathrm{S}(1)$ | $101 \cdot 9(2)$ | $\mathrm{P}(1)-\mathrm{S}(2)-\mathrm{S}\left(1^{\prime}\right)$ | $104 \cdot 6(2)$ |
| $\mathrm{S}(3)-\mathrm{P}(1)-\mathrm{S}(2)$ | $101.9(2)$ | $\mathrm{S}(4)-\mathrm{P}(1)-\mathrm{S}(1)$ | $113.6(2)$ |
| $\mathrm{S}(4)-\mathrm{P}(1)-\mathrm{S}(2)$ | $112 \cdot 6(2)$ | $\mathrm{S}(4)-\mathrm{P}(1)-\mathrm{S}(3)$ | $122 \cdot 1(2)$ |
| $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(5)$ | $120.5(6)$ | $\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(10)$ | $121 \cdot 5(6)$ |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | $120.0(7)$ | $\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(7)$ | $120.0(7)$ |
| $\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(4)$ | $122 \cdot 2(7)$ | $\mathrm{N}(2)-\mathrm{C}(10)-\mathrm{C}(9)$ | $120.6(7)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | $119.6(7)$ | $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$ | $118.5(7)$ |
| $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$ | $117.8(7)$ | $\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$ | $119.0(7)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | $119.9(7)$ | $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ | $120.4(7)$ |

$\mathrm{P}_{2} \mathrm{~S}_{6} \mathrm{Br}_{2}$ (Einstein, Penfold \& Tapsell, 1965) adopts a skew-boat conformation with S-S $2.03 \AA, \mathrm{P}-\mathrm{S}-\mathrm{S}$ 99.5 and $99.8^{\circ}$, and $\mathrm{P}-\mathrm{S}-\mathrm{S}-\mathrm{P} 86^{\circ}$. Einstein et al. suggest that $\mathrm{P}_{2} \mathrm{~S}_{6} \mathrm{Br}_{2}$ does not adopt the chair conformation because this would lead to serious repulsions between ring and terminal atoms, or unacceptably small $\mathrm{P}-\mathrm{S}-\mathrm{S}-\mathrm{P}$ and large $\mathrm{P}-\mathrm{S}-\mathrm{S}$ angles. In $\left[\mathrm{P}_{2} \mathrm{~S}_{8}\right]^{2-}$ the shortest such $\mathrm{S} \cdots \mathrm{S}$ contacts are 3.78 and $3.80 \AA$ although the ring geometry is close to that in $S_{6}$.

The $\mathrm{P}(1)-\mathrm{S}(4)$ bond $[1.946(4) \AA$ ] is significantly shorter than $\mathrm{P}(1)-\mathrm{S}(3)[1.966$ (4) $\AA]$, and the angles it subtends [113.6(2), 112.6(2) and $\left.122 \cdot 1(2)^{\circ}\right]$ are much larger than the other three valence angles at $P$


Fig. 1. The $\left\{\mathrm{P}_{2} \mathrm{~S}_{8}\right]^{2-}$ anion, showing angles $\left({ }^{\circ}\right)$ and librationally corrected bond lengths ( $\AA$ ).


Fig. 2. The $\left\{p y_{2} \mathrm{H}\right\}^{+}$cation, showing both positions for the disordered H atom.
[102.2 (2), $101.9(2)$ and $\left.101.9(2)^{\circ}\right]$. This indicates that $\mathrm{P}(1)-\mathrm{S}(4)$ has more double-bond character, and hence $S(3)$ carries more of the negative charge than $S(4)$. Since $S(3)$ and $S\left(3^{\prime}\right)$ are equatorial, this minimizes the repulsion between negatively charged atoms. The shortest H...S distances are clustered around 3.0-3.1 $\AA$ for all the $S$ atoms, providing little evidence for $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonding.

Although the overall cation geometry (Fig. 2), $\mathrm{N} \cdots \mathrm{N}$ distance $[2.655$ (7) $\AA$ ] and difference electron density synthesis provide good evidence for an approximately linear but twofold-disordered hydrogen bond, the H coordinates should be regarded as tentative since a constrained refinement was necessary. The angle between the vectors $\mathrm{C}(8) \cdots \mathrm{N}(2)$ and $C(3) \cdots N(1)$ is $168.8^{\circ}$, and the angle between the planes of the two pyridine rings is $101.5^{\circ}$. Although several $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds have been reported, the only other cationic example appears to be a symmetrical but bent bond $[\mathrm{N} \cdots \mathrm{N} 2.63 \AA, \mathrm{~N}-\mathrm{H}-\mathrm{N}$ $141(12)^{\circ} \mathrm{J}$ bridging two dimethylamino groups in a substituted naphthalene (Truter \& Vickery, 1972).

We are grateful to the Science Research Council for a contribution towards the cost of the diffractometer, and for a maintenance grant to PCM. The calculations were performed on the Cambridge University IBM 370/165 computer with programs written by GMS.

## References

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Cruickshank, D. W. J. (1956). Acta Cryst. 9, 754-756.
Donohue, J., Caron, A. \& Goldish, E. (1961). J. Am. Chem. Soc. 83, 3748-3751.
Einstein, F. W. B., Penfold, B. R. \& Tapsell, Q. T. (1965). Inorg. Chem. 4, 186-188.

Schomaker, V. \& Trueblood, K. N. (1968). Acta Cryst. B24, 63-76.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Truter, M. R. \& Vickery, B. L. (1972). J. Chem. Soc. Dalton Trans. pp. 395-403.


[^0]:    $\dagger$ Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33246 ( 12 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

